Respuesta :

Answer:

740

Step-by-step explanation:

Let the AP be a, a+d, a+2d, a+3d, ...

The  term of AP is given by:

[tex]t n =a+(n-1)d[/tex]

We are given that the third term is 7.

[tex]t 3=7[/tex]

⇒  [tex]a+(3-1)d=7[/tex]

⇒[tex]a+2d=7 ---(1)[/tex]

Also, the seventh term is 2 more than three times the third term.

[tex]t7=3t3+2[/tex]

⇒[tex]a+ (7-1)d=3(a+(3-1)d)+2[/tex]

⇒[tex]a+6d=3(a+2d)+2[/tex]

⇒[tex]a+6d=3a+6d+2[/tex]

⇒[tex]-2a=2[/tex]

⇒[tex]a=-1[/tex]

We can put it in (1)

[tex]a+2d=7[/tex]

⇒[tex](-1)+2d=7[/tex]

⇒[tex]2d=8[/tex]

⇒d=4

Now, the Sum of n terms of an AP is given by the formula:

[tex]sn=\frac{n}{2}(2a+(n-1)d)[/tex]

So, Sum of first 20 terms would be:

[tex]s 20=\frac{20}{2}(2(-1) +(20-1) x 4)[/tex]

⇒[tex]s20=10(-2+19 x 4)[/tex]

⇒[tex]s 20=10 x(-2+76)[/tex]

⇒[tex]s 20= 10 x 74[/tex]

⇒[tex]s 20=740[/tex]

Thus, The Sum of first 20 terms of the AP is 740.