The quadratic function f(x) = -x2 - 6x - 8 is graphed.
What are the solutions of the quadratic equation 0 =-
x2 - 6x-8?
2
O 2 and 4
-2 and 4
0-2 and -4
O2 and 4
2
X
-654-3
Next
Submit
Save and Exit
Mark this and return

Respuesta :

Answer:

The roots of the quadratic function [tex]f(x) = -x^{2}-6\cdot x -8[/tex] are  [tex]x_{1} = -4[/tex] and [tex]x_{2} = -2[/tex].

Step-by-step explanation:

Let be [tex]f(x) = -x^{2}-6\cdot x -8[/tex], the function is now graphed by using a graphing tool and whose outcome is added below as attachment. After looking the image, the roots of the polynomial are [tex]x_{1} = -4[/tex] and [tex]x_{2} = -2[/tex], respectively. It can be also proved by algebraic means:

1) [tex]-x^{2}-6\cdot x -8=0[/tex] Given

2) [tex]-(x^{2}+6\cdot x+8 )= 0[/tex] Distributive property/ [tex]-(x) = -x[/tex]

3) [tex]-(x^{2} +4\cdot x +2\cdot x +8)= 0[/tex] Addition

4) [tex]-[x\cdot (x+4)+2\cdot (x+4)] = 0[/tex] Distributive property/Associative property

5) [tex]-(x+2)\cdot (x+4) = 0[/tex] Distributive property/Result

Which supports the graphic findings.

The roots of the quadratic function [tex]f(x) = -x^{2}-6\cdot x -8[/tex] are  [tex]x_{1} = -4[/tex] and [tex]x_{2} = -2[/tex].

Ver imagen xero099