Help me pls pls pls

Answer:
Since the input values are -7/2 and 2. So the answer is C.
Step-by-step explanation:
Given that when x-value is substituted into the function, you get 19. So in order to find the input value (x), you have to make the function equals 19 :
[tex]f(x) = 2 {x}^{2} + 3x + 5[/tex]
[tex]let \: f(x) = 19[/tex]
[tex]2 {x}^{2} + 3x + 5 = 19[/tex]
Next, you have to factorize it :
[tex]2 {x}^{2} + 3x + 5 - 19 = 0[/tex]
[tex]2 {x}^{2} + 3x - 14 = 0[/tex]
[tex]2 {x}^{2} + 7x - 4x - 14 = 0[/tex]
[tex]x(2x + 7) - 2(2x + 7) = 0[/tex]
[tex](x - 2)(2x + 7) = 0[/tex]
Lastly, solve it :
[tex]x - 2 = 0[/tex]
[tex]x = 2[/tex]
[tex]2x + 7 = 0[/tex]
[tex]x = - \frac{7}{2} [/tex]
Answer:
C. 2
Step-by-step explanation:
1. Set up the equation
19 = 2x² + 3x + 5 → 2x² + 3x = 14
Divide by two to get a=1
x² + 1.5x = 7
2. Complete the square using (b/2)²
(1.5/2)² = 0.5625
x² + 1.5x + 0.5625 = 7 + 0.5625
3. Factor perfect square trinomial and simplify
√x² + 1.5x + √0.5625 = 7 + 0.5625
(x + 0.75)² = 7.5625
4. Square root each side
√(x + 0.75)² = √7.5625
x + 0.75 = ±2.75
5. Set up two possibilities and solve
x = -0.75 ± 2.75
x = -0.75 + 2.75 = 2
x = -0.75 - 2.75 = -3.5
6. Plug in the values
2(2)² + 3(2) + 5 = 19
2(-3.5)² + 3(-3.5) + 5 = -30
x = 2