Respuesta :
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Lets do this step by step.
This is the trigonometric form of a complex number where [tex]|z|[/tex] is the modulus and [tex]0[/tex] is the angle created on the complex plane.
[tex]z = a + bi = |z| (cos ( 0 ) + I sin (0))[/tex]
The modulus of a complex number is the distance from the origin on the complex plane.
[tex]|z| = \sqrt{a^2 + b^2}[/tex] where [tex]z = a + bi[/tex]
Substitute the actual values of a = -5 and b = -5.
[tex]|z| = \sqrt{(-5) ^2 + (-5) ^2}[/tex]
Now Find [tex]|z|[/tex] .
Raise - 5 to the power of 2.
[tex]|z| = \sqrt{25 + (-5) ^2}[/tex]
Raise - 5 to the power of 2.
[tex]|z| = \sqrt{25 + 25}[/tex]
Add 25 and 25.
[tex]|z| = \sqrt{50}[/tex]
Rewrite 50 as 5^2 . 2 .
[tex]|z| = 5\sqrt{2}[/tex]
Pull terms out from under the radical.
[tex]|z| = 5\sqrt{2}[/tex]
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
[tex]0 = arctan (\frac{-5}{-5} )[/tex]
Since inverse tangent of [tex]\frac{-5}{-5}[/tex] produces an angle in the third quadrant, the value of the angle is [tex]\frac{5\pi }{4}[/tex] .
[tex]0 = \frac{5\pi }{4}[/tex]
Substitute the values of [tex]0 = \frac{5\pi }{4}[/tex] and [tex]|z| = 5\sqrt{2}[/tex] .
[tex]5\sqrt{2} ( cos( \frac{5\pi}{4}) + i sin (\frac{5\pi}{4}))[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
Answer:
five square root two times the quantity cosine of five pi divided by four plus i times sine of five pi divided by four