Respuesta :

Answer:

[tex]\boxed{\frac{-3b^4 }{a^6 }}[/tex]

Step-by-step explanation:

[tex]\frac{-18a^{-8}b^{-3}}{6a^{-2}b^{-7}}[/tex]

[tex]\frac{-18}{6} \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]

[tex]-3 \times \frac{a^{-8}}{a^{-2}} \times \frac{b^{-3}}{b^{-7}}[/tex]

Apply the law of exponents, when dividing exponents with same base, we subtract the exponents.

[tex]-3 \times a^{-8-(-2)} \times b^{-3- (-7)}[/tex]

[tex]-3 \times a^{-8+2} \times b^{-3+7}[/tex]

[tex]-3 \times a^{-6} \times b^{4}[/tex]

[tex]{-3a^{-6}b^{4}}[/tex]

The answer should be without negative exponents.

[tex]a^{-6}=\frac{1}{a^6 }[/tex]

[tex]\frac{-3b^4 }{a^6 }[/tex]

Answer:

[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]

Step-by-step explanation:

[tex] \frac{ - 18 {a}^{ - 8} {b}^{ - 3} }{6 {a}^{ - 2} {b}^{ - 7} } [/tex]

Reduce the fraction with 6

[tex] \frac{ - 3 {a}^{ - 8} {b}^{ - 3} }{ {a}^{ - 2} {b}^{ - 7} } [/tex]

Simplify the expression

[tex] \frac{ - 3 {b}^{4} }{ {a}^{6} } [/tex]

Use [tex] \frac{ - a}{b} = \frac{a}{ - b} = - \frac{a}{b \: } [/tex] to rewrite the fraction

[tex] - \frac{3 {b}^{4} }{ {a}^{6} } [/tex]

Hope this helps...

Best regards!!