Respuesta :

Answer:

[tex]\lim_{x\to 0}\dfrac{-7+x}{x^2}=-\infty[/tex]

Step-by-step explanation:

The given limit problem is

[tex]\lim_{x\to 0}\dfrac{-7+x}{x^2}[/tex]

Left hand limit of the function is

[tex]LHL=\lim_{x\to 0^-}\dfrac{-7+x}{x^2}=\lim_{h\to 0}\dfrac{-7+(0-h)}{(0-h)^2}[/tex]

[tex]LHL=\lim_{h\to 0}\dfrac{-7-h}{h^2}[/tex]

Applying limit, we get

[tex]LHL=-\infty[/tex]

Right hand limit of the function is

[tex]RHL=\lim_{x\to 0^+}\dfrac{-7+x}{x^2}=\lim_{h\to 0}\dfrac{-7+(0+h)}{(0+h)^2}[/tex]

[tex]RHL=\lim_{h\to 0}\dfrac{-7+h}{h^2}[/tex]

Applying limit, we get

[tex]RHL=-\infty[/tex]

Since, LHL=RHL, therefore limit of the function exist at x=0.

Hence, [tex]\lim_{x\to 0}\dfrac{-7+x}{x^2}=-\infty[/tex].