Looks like the equation is
[tex]y(t)+9\displaystyle\int_0^te^{9(t-v)}y(v)\,\mathrm dv=\sin(3t)[/tex]
Differentiating both sides yields the linear ODE,
[tex]y'(t)+9e^{9(t-t)}y(t)=3\cos(3t)[/tex]
or
[tex]y'(t)+9y(t)=3\cos(3t)[/tex]
Multiply both sides by the integrating factor [tex]e^{9t}[/tex]:
[tex]e^{9t}y'(t)+9e^{9t}y(t)=3e^{9t}\cos(3t)[/tex]
[tex]\left(e^{9t}y(t)\right)'=3e^{9t}\cos(3t)[/tex]
Integrate both sides, then solve for [tex]y(t)[/tex]:
[tex]e^{9t}y(t)=\dfrac1{10}e^{9t}(\sin(3t)+3\cos(3t))+C[/tex]
[tex]y(t)=\dfrac{\sin(3t)+3\cos(3t)}{10}+Ce^{-9t}[/tex]
The given answer choices all seem to be missing C, so I suspect you left out an initial condition. But we can find one; let [tex]t=0[/tex], then the integral vanishes and we're left with [tex]y(0)=0[/tex]. So
[tex]0=\dfrac{0+3}{10}+C\implies C=-\dfrac3{10}[/tex]
So the particular solution is
[tex]y(t)=\dfrac{\sin(3t)+3\cos(3t)-3e^{-9t}}{10}[/tex]