Respuesta :

Answer:

Area of the triangle WXY = 365.3 mm²

Step-by-step explanation:

By applying Sine rule in the given triangle XYW,

[tex]\frac{\text{SinY}}{\text{WX}}=\frac{\text{SinX}}{\text{YW}}[/tex]

[tex]\frac{\text{Sin70}}{\text{WX}}=\frac{\text{Sin43}}{\text{24}}[/tex]

WX = [tex]\frac{24.\text{Sin70}}{\text{Sin43}}[/tex]

      = 33.068 mm

      = 33.07 mm

Area of a triangle = [tex]\frac{1}{2}a.b.\text{Sin}\theta[/tex]

where a and b are the sides of the triangle and θ is the angle between the sides a and b.

Area = [tex]\frac{1}{2}(33.07)(24)\text{SinW}[/tex]

Since, m∠X + m∠Y + m∠W = 180°

m∠W =  180 - (43 + 70)

         = 67°

Area of the triangle WXY = [tex]12\times (33.07)\text{Sin67}[/tex]

                                          = 365.29 mm²

                                           ≈ 365.3mm²