Matthea
contestada

Given that
[tex]v = \pi {r}^{2} h[/tex]
Make h the subject of the formula. Evaluate h when
[tex]\pi = 22 \div 7[/tex]
[tex]r = 7[/tex]
[tex]v = 616[/tex]


Respuesta :

Answer:

h = 4

Step-by-step explanation:

v = πr²h

To make h the subject divide both sides by πr²

So we have

[tex]h = \frac{v}{\pi {r}^{2} } [/tex]

when

π = 22/7

r = 7

v = 616

We have h as

[tex]h = \frac{616}{ \frac{22}{7} \times {7}^{2} } = \frac{616}{ \frac{22}{7} \times 49} [/tex]

[tex]h = \frac{616}{22 \times 7} = \frac{616}{154} [/tex]

h = 4

Hope this helps you