The service life of a battery used in a cardiac pacemaker is assumed to be normally distributed. A random sample of ten batteries is subjected to an accelerated life test by running them continuously at an elevated temperature until failure, and the following lifetimes (in hours) are obtained: 25.5, 26.1, 26.8, 23.2, 24.2, 28.4, 25.0, 27.8, 27.3, and 25.7. The manufacturer wants to be certain that the mean battery life exceeds 25 hours in accelerated lifetime testing.
Construct a 90%, two sided confidence interval on mean life in the accelerated test.

Respuesta :

Answer:

The confidence interval is  [tex]25.16 < \mu < 26.85[/tex]

Step-by-step explanation:

From  the question we are given a data set

     25.5, 26.1, 26.8, 23.2, 24.2, 28.4, 25.0, 27.8, 27.3, and 25.7.

The mean of the this sample data is  

       [tex]\= x = \frac{\sum x_i}{n}[/tex]

where is the sample size with values  n =  10

         [tex]\= x = \frac{25.5+ 26.1+ 26.8+23.2+ 24.2+ 28.4+ 25.0+ 27.8+ 27.3+ 25.7}{10}[/tex]

          [tex]\= x = 26[/tex]

The standard deviation is evaluated as

             [tex]\sigma = \sqrt{\frac{\sum (x-\= x)}{n} }[/tex]

substituting values

     [tex]= \sqrt{\frac{ ( 25.5-26)^2, (26.1-26)^2, (26.8-26)^2, (23.2-26)^2}{10} }[/tex]

                  [tex]\cdot \ \cdot \ \cdot \sqrt{\frac{ ( 24.2-26)^2, (28.4-26)^2+( 25.0-26)^2+ (27.8-26)^2+( 27.3-26)^2+( 25.7-26)^2}{10} }[/tex]

     [tex]\sigma = 1.625[/tex]

The  confidence level is given as 90% hence the level of significance is calculated as

    [tex]\alpha = 100 -90[/tex]

    [tex]\alpha =10[/tex]%

   [tex]\alpha = 0.10[/tex]

Now the critical values of [tex]\frac{\alpha }{2}[/tex] is obtained from the normal distribution table as

      [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]

The reason  we are obtaining  the critical values of [tex]\frac{\alpha }{2}[/tex] instead of  [tex]\alpha[/tex] is because  we are considering two tails of the area under the normal curve

  The margin of error is evaluated as

            [tex]MOE = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

           [tex]MOE = 1.645 * \frac{1.625 }{\sqrt{10} }[/tex]

           [tex]MOE = 0.845[/tex]

The  90%, two sided confidence interval is mathematically evaluated as

           [tex]\= x - MOE < \mu < \= x + MOE[/tex]

           [tex]26 - 0.845 < \mu < 26 + 0.845[/tex]

           [tex]25.16 < \mu < 26.85[/tex]

Given that the lower and the upper limit is greater than  25 then we can assure the manufactures  that the battery life exceeds 25 hours