Calculate the frequency (Hz) and wavelength (nm)

of the emitted photon when an electron drops from

the n = 4 to the n=2 level in a hydrogen atom

Respuesta :

Answer:

wavelength, λ =  486.6 nm

frequency, f = 6.16 * 10¹⁴ Hz

Explanation:

a. Wavelength

Using the wavelength equation; 1/λ = (1/hc) * 2.18 * 10⁻¹⁸ J * (1/nf² - 1/ni²)

Where nf is the final energy level; ni is the initial energy level; h is Planck's constant = 6.63 * 10⁻³⁴ J.s; c is velocity of light = 3 * 10⁸ m/s

1/λ = 1/(6.63 * 10⁻³⁴ J.s * 3 * 10⁸ m/s) * 2.18 * 10⁻¹⁸ J * (1/2² - 1/4²)

1/λ = 2.055 * 10⁶ m

λ = 4.866 * 10⁻⁷ m

wavelength, λ =  486.6 nm

b.  Frequency

Using f = c/λ

f = (3 * 10⁸ m/s) / 4.866 * 10⁻⁷ m

frequency, f = 6.16 * 10¹⁴ Hz