Respuesta :
Answer:
6 units
Step-by-step explanation:
Let, Radius = r units
Height ( h ) = 3r units
Volume ( V ) = 24π units³
Now,
Let's find the height of the cylinder:
[tex]\pi {r}^{2} h \: = 24\pi[/tex]
[tex] {r}^{2} (3r) = 24[/tex]
Calculate the product
[tex]3 {r}^{3} = 24[/tex]
Divide both sides of equation by 3
[tex] \frac{3 {r}^{ 3} }{3} = \frac{24}{3} [/tex]
Calculate
[tex] {r}^{3} = 8[/tex]
Write the number in the exponential form with an exponent of 3
[tex] {r}^{3} = {2}^{3} [/tex]
Take the root of both sides of the equation
[tex]r = 2[/tex]
Replacing value,
Height = 3r
[tex] = 3 \times 2[/tex]
Calculate
[tex] = 6 \: units[/tex]
Hope this helps..
Best regards!!
Answer:
[tex]\boxed{6 \: \mathrm{units}}[/tex]
Step-by-step explanation:
The formula for volume of cylinder is:
[tex]V=\pi r^2 h\\V:volume\\r:radius\\h:height[/tex]
[tex]V=24\pi\\h=3r[/tex]
Solve for r.
[tex]24\pi =\pi r^2 (3r)[/tex]
Cancel [tex]\pi[/tex] on both sides.
[tex]24=3r^3[/tex]
Divide 3 on both sides.
[tex]8=r^3[/tex]
Cube root on both sides.
[tex]2=r[/tex]
The radius of the base is 2 units.
Solve for h.
[tex]24\pi =\pi (2)^2 h[/tex]
Cancel [tex]\pi[/tex] on both sides.
[tex]24=4h[/tex]
Divide both sides by 4.
[tex]6=h[/tex]