Answer:
c. 108
Step-by-step explanation:
Given
Shape of container: Cube
Initial dimension of the container = 6ft by 6ft by 6ft
Initial Number of boxes = 4
Required
Calculate the number of boxes when the dimension is tripled
The first step is to calculate the initial volume of the box;
[tex]Volume = Length * Length * Length[/tex]
[tex]Volume = 6ft * 6ft * 6ft[/tex]
[tex]Volume = 216ft^3[/tex]
This implies that the container can contain 4 small boxes when its volume is 216;
Represent this as a ratio;
[tex]4 : 216[/tex]
The next step is to calculate the volume when the dimension is tripled;
[tex]New\ Length = Old\ Length * 3[/tex]
[tex]New\ Length = 6ft* 3[/tex]
[tex]New\ Length = 18ft[/tex]
Hence;
[tex]Volume = 18ft * 18ft * 18ft[/tex]
[tex]Volume = 5832ft^3[/tex]
Let the number of boxes it can contain be represented with x
Similarly, represent this as a ratio
[tex]x : 5832[/tex]
Equate both ratios;
[tex]4 : 216 = x : 5832[/tex]
Convert ratios to fractions
[tex]\frac{4}{216} = \frac{x}{5832}[/tex]
Multiply both sides by 5832
[tex]5832 * \frac{4}{216} = \frac{x}{5832} * 5832[/tex]
[tex]5832 * \frac{4}{216} = x[/tex]
[tex]\frac{5832 *4}{216} = x[/tex]
[tex]\frac{23328}{216} = x[/tex]
[tex]108 = x[/tex]
[tex]x = 108[/tex]
Hence, the maximum number of boxes it can contain is 108