Respuesta :

Answer: 0.49 ± 0.0237

Step-by-step explanation: A interval of a 99% confidence interval for the population proportion can be found by:

[tex]p_{hat}[/tex] ± z.[tex]\sqrt{\frac{p_{hat}(1-p_{hat})}{n} }[/tex]

[tex]p_{hat}[/tex] is the proportion:

[tex]p_{hat}[/tex] = [tex]\frac{1455}{2957}[/tex]

[tex]p_{hat}[/tex] = 0.49

For a 99% confidence interval, z = 2.576:

0.49 ± 2.576.[tex]\sqrt{\frac{0.49(1-0.49)}{2957} }[/tex]

0.49 ± 2.576.[tex]\sqrt{\frac{0.49*0.51}{2957} }[/tex]

0.49 ± 2.576.(0.0092)

0.49 ± 0.0237

For a 99% confidence interval, the proportion will be between 0.4663 and 0.5137 or 0.49 ± 0.0237