Respuesta :

Answer:

1) [tex](a+ib)(a-ib)[/tex]

2) [tex]a^2+i^2b[/tex]

Step-by-step explanation:

1) [tex]a^2+b^2[/tex]

=> [tex]a^2 - (-1)b^2[/tex]      (We know that -1 = [tex]i^2[/tex] )

=> [tex]a^2-i^2b^2[/tex]

=> [tex](a)^2-(ib)^2[/tex]

Using Formula [tex]a^2 -b^2 = (a+b)(a-b)[/tex]

=> [tex](a+ib)(a-ib)[/tex]

2) [tex]a^2-b[/tex]

=> [tex]a^2+(-1)b[/tex]      (We know that -1 = [tex]i^2[/tex] )

=> [tex]a^2+i^2b[/tex]  (It cannot be simplified further)

Answer:

[tex]\boxed{(a+ib)(a-ib)}[/tex]

[tex]\boxed{a^2+i^2b}[/tex]

Step-by-step explanation:

[tex]a^2 + b^2[/tex]

Rewrite expression.

[tex]a^2- (-1)b^2[/tex]

Use identity :  [tex]-1=i^2[/tex]

[tex]a^2- i^2 b^2[/tex]

Factor out square.

[tex]a^2-(ib)^2[/tex]

Apply difference of two squares formula : [tex]a^2-b^2 =(a+b)(a-b)[/tex]

[tex](a+ib)(a-ib)[/tex]

[tex]a^2-b[/tex]

Rewrite expression.

[tex]a^2+(-1)b[/tex]

Use identity :  [tex]-1=i^2[/tex]

[tex]a^2+i^2b[/tex]