Respuesta :
Answer:
1) [tex](a+ib)(a-ib)[/tex]
2) [tex]a^2+i^2b[/tex]
Step-by-step explanation:
1) [tex]a^2+b^2[/tex]
=> [tex]a^2 - (-1)b^2[/tex] (We know that -1 = [tex]i^2[/tex] )
=> [tex]a^2-i^2b^2[/tex]
=> [tex](a)^2-(ib)^2[/tex]
Using Formula [tex]a^2 -b^2 = (a+b)(a-b)[/tex]
=> [tex](a+ib)(a-ib)[/tex]
2) [tex]a^2-b[/tex]
=> [tex]a^2+(-1)b[/tex] (We know that -1 = [tex]i^2[/tex] )
=> [tex]a^2+i^2b[/tex] (It cannot be simplified further)
Answer:
[tex]\boxed{(a+ib)(a-ib)}[/tex]
[tex]\boxed{a^2+i^2b}[/tex]
Step-by-step explanation:
[tex]a^2 + b^2[/tex]
Rewrite expression.
[tex]a^2- (-1)b^2[/tex]
Use identity : [tex]-1=i^2[/tex]
[tex]a^2- i^2 b^2[/tex]
Factor out square.
[tex]a^2-(ib)^2[/tex]
Apply difference of two squares formula : [tex]a^2-b^2 =(a+b)(a-b)[/tex]
[tex](a+ib)(a-ib)[/tex]
[tex]a^2-b[/tex]
Rewrite expression.
[tex]a^2+(-1)b[/tex]
Use identity : [tex]-1=i^2[/tex]
[tex]a^2+i^2b[/tex]