Answer:
H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]
Now we can calculate the statistic like this:
[tex]F=\frac{s^2_A}{s^2_B}=\frac{30^2}{20^2}=2.25[/tex]
And the best option would be:
b. 2.25
Step-by-step explanation:
Information given
[tex]n_A = 25 [/tex] represent the sample size A
[tex]n_B =16[/tex] represent the sample size B
[tex]s_A = 30[/tex] represent the sample deviation for A
[tex]s_B = 20[/tex] represent the sample deviation for B
Solution to the problem
We want to test if the variation for A it's equal to the variation for B, so the system of hypothesis are:
H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]
Now we can calculate the statistic like this:
[tex]F=\frac{s^2_A}{s^2_B}=\frac{30^2}{20^2}=2.25[/tex]
And the best option would be:
b. 2.25