The data set gives the number of hours it took each of the 10 students in a cooking class to master a particular technique. Which of the numbers below is the best measure of the central tendency of the data?
{3, 3, 4, 4, 4, 5, 5, 5, 5, 30}

Respuesta :

For this data set:
Mean:  (3+3+4+4+4+5+5+5+5+30) : 10 = 6.8
Mode : 5
Median : (4+5) : 2 =4.5
In this case, the mean is not the best way to show central tendency.
The median is less affected by outliers and skewed data.
Answer: The best measure for the central tendency is the median:  4.5 

[tex]3, 3, 4, 4, 4, 5, 5, 5, 5, 30[/tex]

[tex]\left[\begin{array}{ccc}Q1&--\\Mean&6.8\\Median&4.5&Correct\\Range&27\end{array}\right][/tex]

First Quartile:

[tex]\left[\begin{array}{ccc}3|3\\4|4\\4|5\\5|5\\5|30\end{array}\right][/tex]

[tex]NotApplicable[/tex]

Mean:

[tex]3, 3, 4, 4, 4, 5, 5, 5, 5, 30[/tex]

[tex]3^{2}+4^{3}+5^{4}+30[/tex]

[tex]\left[\begin{array}{ccc}\frac{68}{10}\end{array}\right][/tex]

[tex]6.8[/tex]

Median:

[tex]\left[\begin{array}{ccc}3, 3, 4, 4, 4, 5, 5, 5, 5, 30\end{array}\right][/tex]

Process Of Elimination

[tex] 4, 5[/tex]

Can't Split up Whole Numbers Any More Than They Are Already So Answer Is

[tex]4.5[/tex]

Range:

[tex]3, 3, 4, 4, 4, 5, 5, 5, 5, 30[/tex]

[tex]30-3[/tex]

[tex]27[/tex]