PLEASE HELP I"M BEING TIMED!!!!!!!!!!!!!!!!!!!!!!!!!!!!!




Which expression is equivalent to log Subscript 12 Baseline StartFraction x Superscript 4 Baseline StartRoot x cubed minus 2 EndRoot Over (x + 1) Superscript 5 Baseline EndFraction?

4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x times 1)

4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline StartFraction x cubed Over 2 EndFraction minus 5 log Subscript 12 Baseline 1

log Subscript 12 Baseline 4 x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x) + 1

4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x + 1)

Respuesta :

Answer:

[tex]D)4log_{12}x+\frac{1}{2} log_{12}(x^3-2)-5log_{12}(x+1)[/tex]

(4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x + 1)

Step-by-step explanation:

Given the expression:

[tex]log_{12}\dfrac{x^4\sqrt{x^3-2} }{(x+1)^5}[/tex]

first apply the division law of logarithm:

[tex]log_{a}x/y=log_{a}x-log_{a}y[/tex]

[tex]log_{12}\dfrac{x^4\sqrt{x^3-2} }{(x+1)^5}=log_{12}x^4\sqrt{x^3-2}-log_{12}(x+1)^5[/tex]

Next, by addition law:[tex]log_{a}xy=log_{a}x+log_{a}y[/tex]

[tex]=log_{12}x^4+log_{12}\sqrt{x^3-2}-log_{12}(x+1)^5\\\\Log a^m=mLog a, Log \sqrt{x}=log x^{1/2}\\\\ =4log_{12}x+log_{12}(x^3-2)^{1/2}-5log_{12}(x+1)\\\\=4log_{12}x+\frac{1}{2} log_{12}(x^3-2)-5log_{12}(x+1)[/tex]

Answer:

Its D on edge

Step-by-step explanation: