Respuesta :
Answer:
[tex]D)4log_{12}x+\frac{1}{2} log_{12}(x^3-2)-5log_{12}(x+1)[/tex]
(4 log Subscript 12 Baseline x + one-half log Subscript 12 Baseline (x cubed minus 2) minus 5 log Subscript 12 Baseline (x + 1)
Step-by-step explanation:
Given the expression:
[tex]log_{12}\dfrac{x^4\sqrt{x^3-2} }{(x+1)^5}[/tex]
first apply the division law of logarithm:
[tex]log_{a}x/y=log_{a}x-log_{a}y[/tex]
[tex]log_{12}\dfrac{x^4\sqrt{x^3-2} }{(x+1)^5}=log_{12}x^4\sqrt{x^3-2}-log_{12}(x+1)^5[/tex]
Next, by addition law:[tex]log_{a}xy=log_{a}x+log_{a}y[/tex]
[tex]=log_{12}x^4+log_{12}\sqrt{x^3-2}-log_{12}(x+1)^5\\\\Log a^m=mLog a, Log \sqrt{x}=log x^{1/2}\\\\ =4log_{12}x+log_{12}(x^3-2)^{1/2}-5log_{12}(x+1)\\\\=4log_{12}x+\frac{1}{2} log_{12}(x^3-2)-5log_{12}(x+1)[/tex]