Evaluate the indefinite integral by using the substitution uequals=y Superscript 4 Baseline plus 4 y squared plus 6y4+4y2+6 to reduce the integral to standard form. Integral from nothing to nothing 12 (y Superscript 4 Baseline plus 4 y squared plus 6 )squared (y cubed plus 2 y )font size decreased by 6 dy

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The solution to the  indefinite integral is  [tex]k = (y^4 + 4y^2 +2)^3 + C[/tex]

Step-by-step explanation:

From the question we are told that

    The indefinite integral is  

             [tex]\int\limits {12(y^4 +4y^2 + 1 )(y^3 +2y)} \, dy[/tex]

Let

       [tex]\int\limits \, dk = \int\limits {12(y^4 +4y^2 + 1 )(y^3 +2y)} \, dy[/tex]

given that

            [tex]u = y^4 +4y^2 +1[/tex]

Now differentiating with respect to y

           [tex]\frac{du}{dy} = 4y^3 + 8y[/tex]

=>       [tex]\frac{du}{dy} = 4(y^3 + 2y)[/tex]

=>     [tex]\frac{du}{4} = (y^3 + 2y)dy[/tex]

So

     [tex]k =\int\limits {12(y^4 +4y^2 + 1 )(y^3 +2y)} \, dy \equiv \int\limits {12(u^2 * \frac{1}{4} } \, du[/tex]

     [tex]k = 3 \int\limits {u^2 } \, du[/tex]

    [tex]k = 3\frac{u^3}{3} + C[/tex]

     [tex]k =u^3 +C[/tex]

Substituting back y for u

    [tex]k = (y^4 + 4y^2 +2)^3 + C[/tex]

Ver imagen okpalawalter8