If n = 580 and X = 464, construct a 90% confidence interval for the population proportion, p.



Give your answers to three decimals



< p <

Respuesta :

Answer:

[tex]0.80 - 1.64 \sqrt{\frac{0.8(1-0.8)}{580}}=0.773[/tex]

[tex]0.80 + 1.64 \sqrt{\frac{0.8(1-0.8)}{580}}=0.827[/tex]

And the 90% confidence interval would be given (0.773;0.827).

Step-by-step explanation:

The information given is:

[tex]X = 464[/tex] represent the number of individuals with the characteristic

[tex]n = 580[/tex] the sample size

[tex]\hat p =\frac{X}{n}= \frac{464}{580}= 0.8[/tex]

The confidence interval would be given by this formula

[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

For the 90% confidence interval the value of [tex]\alpha=1-0.9=0.1[/tex] and [tex]\alpha/2=0.05[/tex], the critical value for this case is:

[tex]z_{\alpha/2}=1.64[/tex]

And replacing into the confidence interval formula we got:

[tex]0.80 - 1.64 \sqrt{\frac{0.8(1-0.8)}{580}}=0.773[/tex]

[tex]0.80 + 1.64 \sqrt{\frac{0.8(1-0.8)}{580}}=0.827[/tex]

And the 90% confidence interval would be given (0.773;0.827).