Respuesta :
Answer:
[tex]2\log _32+\log _35[/tex]
Step-by-step explanation:
Given: [tex]\log _3 20[/tex]
To find: the correct option
Solution:
The logarithm function is the inverse function to exponentiation function.
Domain of a logarithmic function = set of real numbers greater than zero Range of a logarithmic function = set of real numbers
[tex]\log _3 20=\log _3(2^2\times 5)[/tex]
As [tex]\log _a(xy)=\log _ax+\log _ay[/tex],
[tex]\log _3 20=\log _32^2+\log _35[/tex]
As [tex]\log _ax^y=y\log _ax[/tex] ,
[tex]\log _3 20=\log _32^2+\log _35\\=2\log _32+\log _35[/tex]
Expressions can be converted to and from logarithmic forms
[tex]\mathbf{log_320 }[/tex] can be rewritten as: [tex]\mathbf {log_3(4) +log_3(5)}[/tex]
The expression is given as:
[tex]\mathbf{log_320}[/tex]
Express 20 as 4 * 5
[tex]\mathbf{log_320 = log_3(4 \times 5)}[/tex]
Apply law of logarithm: Split the expression
[tex]\mathbf{log_320 = log_3(4) +log_3(5)}[/tex]
The above equation means that:
[tex]\mathbf{log_320 }[/tex] can be rewritten as: [tex]\mathbf {log_3(4) +log_3(5)}[/tex]
Hence, the equivalent expression of [tex]\mathbf{log_320 }[/tex] is [tex]\mathbf {log_3(4) +log_3(5)}[/tex]
Read more about logarithms at:
https://brainly.com/question/8657113