Respuesta :

Answer:

64, 512, 4096 respectively.

Step-by-step explanation:

The given geometric series is

[tex]\sum\limits_{n=1}^5(8)^{n-1}[/tex]

It can be rewritten as

[tex]\sum\limits_{n=1}^5(8)^{n-1}=(8)^{1-1}+(8)^{2-1}+(8)^{3-1}+(8)^{4-1}+(8)^{5-1}[/tex]

[tex]\sum\limits_{n=1}^5(8)^{n-1}=(8)^{0}+(8)^{1}+(8)^{2}+(8)^{3}+(8)^{4}[/tex]

[tex]\sum\limits_{n=1}^5(8)^{n-1}=1+8+64+512+4096[/tex]   ...(i)

It is given that the series is defined as

[tex]1 + 8 +\underline{\quad } +\underline{\quad }+\underline{\quad }[/tex]     ...(ii)

From (i) and (ii), it is clear that the missing values are 64, 512, 4096 respectively.

Answer:

64 +512 +4096

73

Step-by-step explanation:

edg 231 ^u^