Respuesta :
Answer:
[tex]F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}][/tex]
[tex]|F_T|=2\sqrt{34}k\frac{Q^2}{L}[/tex]
[tex]\theta=tan^{-1}(\frac{5}{3})=59.03\°[/tex]
Explanation:
I attached an image below with the scheme of the system:
The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:
[tex]F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}][/tex]
the distances R1, R2 and R3, for a square arrangement is:
R1 = L
R2 = L
R3 = (√2)L
θ = 45°
[tex]F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}][/tex]
and the magnitude is:
[tex]|F_T|=2k\frac{Q^2}{L}\sqrt{3^2+5^2}=2\sqrt{34}k\frac{Q^2}{L}[/tex]
the direction is:
[tex]\theta=tan^{-1}(\frac{5}{3})=59.03\°[/tex]
