contestada

Newton's law of cooling is , where is the temperature of an object, is in hours, is a constant ambient temperature, and is a positive constant. Suppose a building loses heat in accordance with Newton's law of cooling. Suppose that the rate constant has the value Assume that the interior temperature is , when the heating system fails. If the external temperature is , how long will it take for the interior temperature to fall to

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The time taken  is  [tex]t = 6.89 \ hrs[/tex]

 

Explanation:

From the question we are told that

       The value of  [tex]k = 0.15hr^{-1}[/tex]

       The  the interior temperature is  [tex]u(t = 0) = 70 ^oF[/tex]

         The external temperature is  [tex]T = 11 ^oF[/tex]

          The required interior temperature is  [tex]u_{t} = 32 ^oF[/tex]

      The newton cooling law is

                      [tex]\frac{du}{dt} = -k (u -T)[/tex]

=>                 [tex]\frac{du}{u-T} = - kdt[/tex]

  Now integrate both sides we have  

                 [tex]\int\limits \frac{du}{u-T} =\int\limits - kdt[/tex]

                   [tex]ln (u - T) = -kt + c[/tex]    

Since c is a constant lnC = c   will also give a constant so

                 [tex]ln (u - T) = -kt + ln C[/tex]    

       =>       [tex]\frac{(u -T)}{C} = e^{-kt}[/tex]

     =>        [tex]u = T + Ce^{-kt}[/tex]  

          substituting value

                  [tex]70 = 11 +Ce^{-0* 0.15}[/tex]

                  [tex]C = 59[/tex]

Hence

        [tex]u_t = 11 + 59 e^{-0.15 *t}[/tex]

       [tex]32= 11 + 59 e^{-0.15 *t}[/tex]

=>     [tex]t = -\frac{ln(\frac{21}{59} )}{0.15}[/tex]

         [tex]t = 6.89 \ hrs[/tex]

 

Ver imagen okpalawalter8