Respuesta :
Hello,
Let'q the ratio
[tex] u_{1} =18\\ u_{2} =18*q\\ u_{3} =18*q^2=8\ ==\ \textgreater \ q^2= \frac{4}{9} ==\ \textgreater \ q=\pm\ \frac{2}{3} \\ 1) if \ q= \dfrac{2}{3} \ then \ \sum_{i=0}^{\infty}\ 18* (\frac{2}{3} )^i= 18*\frac{1}{1+ \frac{2}{3} } = \frac{18*3}{5}= 10.8\\\\ 2) if \ q= -\dfrac{2}{3} \ then \ \sum_{i=0}^{\infty}\ 18* (-\frac{2}{3} )^i= 18*\frac{1}{1- \frac{2}{3} } = \frac{18*3}{1}= 54\\\\ [/tex]
Let'q the ratio
[tex] u_{1} =18\\ u_{2} =18*q\\ u_{3} =18*q^2=8\ ==\ \textgreater \ q^2= \frac{4}{9} ==\ \textgreater \ q=\pm\ \frac{2}{3} \\ 1) if \ q= \dfrac{2}{3} \ then \ \sum_{i=0}^{\infty}\ 18* (\frac{2}{3} )^i= 18*\frac{1}{1+ \frac{2}{3} } = \frac{18*3}{5}= 10.8\\\\ 2) if \ q= -\dfrac{2}{3} \ then \ \sum_{i=0}^{\infty}\ 18* (-\frac{2}{3} )^i= 18*\frac{1}{1- \frac{2}{3} } = \frac{18*3}{1}= 54\\\\ [/tex]
Answer:
Step-by-step explanation:
The sequence is geometric with
a = 18
Third term = 8.
Let the second term be x.
The infinite geometric sequence will be in the form
18,x,8,......
For geometric sequence, the ratio of two consecutive terms are equal. Hence, we have
[tex]\frac{x}{18}=\frac{8}{x}\\\\x^2=144\\x=\pm12[/tex]
So, there are two possible sequences
18,-12,8,......
and
18,12,8,......
Thus, the common ratios are
[tex]r=\frac{-12}{18},\frac{12}{18}\\\\r=\frac{-2}{3},\frac{2}{3}[/tex]
The sum of the infinite geometric for [tex]r=\frac{-2}{3}[/tex]
[tex]S=\frac{a}{1-r}\\\\\frac{18}{1-\frac{-2}{3}}\\\\S=\frac{18}{\frac{5}{3}}\\\\S=\frac{54}{5}[/tex]
The sum of the infinite geometric for [tex]r=\frac{2}{3}[/tex]
[tex]S=\frac{a}{1-r}\\\\\frac{18}{1-\frac{2}{3}}\\\\S=\frac{18}{\frac{1}{3}}\\\\S=54[/tex]