Respuesta :
Given:
base edge - 8 ft
altitude or height - 75 ft
Surface area = [(3√3)/2] a² + 3a[√h² + (3a²/4)]
S.A = 2.6*8² + 3(8) * √75² + [(3*8²)/4]
S.A = 166.4 + 24 * √5625 + 48
S.A = 166.4 + 24 * √5674
S.A = 166.4 + 24 * 75.33
S.A = 166.4 + 1807.92
S.A = 1974.32 ft²
convert square feet to square yard.
1 sq ft = 0.1111 sq yd
1974.32 ft² * 0.1111 sq.yd/sq.ft = 219.35 sq yd.
22 per sq. yard
219.35 sq. yard * $22/sq.yd = $4,825.70
Total cost is $4,825.70
base edge - 8 ft
altitude or height - 75 ft
Surface area = [(3√3)/2] a² + 3a[√h² + (3a²/4)]
S.A = 2.6*8² + 3(8) * √75² + [(3*8²)/4]
S.A = 166.4 + 24 * √5625 + 48
S.A = 166.4 + 24 * √5674
S.A = 166.4 + 24 * 75.33
S.A = 166.4 + 1807.92
S.A = 1974.32 ft²
convert square feet to square yard.
1 sq ft = 0.1111 sq yd
1974.32 ft² * 0.1111 sq.yd/sq.ft = 219.35 sq yd.
22 per sq. yard
219.35 sq. yard * $22/sq.yd = $4,825.70
Total cost is $4,825.70
Answer:
The total cost is $4825.19.
Explanation:
Given information:
Base edge = 8 ft
Height = 75 ft
The surface area of a regular hexagonal pyramid is
[tex]Area=\frac{3\sqrt{3}}{2}a^2+3a\sqrt{h^2+\frac{3a^2}{4}}[/tex]
where, a is base edge and h is height.
Substitute a=8 and h=75 in the above formula.
[tex]Area=\frac{3\sqrt{3}}{2}(8)^2+3(8)\sqrt{(75)^2+\frac{3(8)^2}{4}}[/tex]
[tex]Area=\frac{3\sqrt{3}}{2}(64)+3(8)\sqrt{5625+48}[/tex]
[tex]Area\approx 166.28+1807.66[/tex]
[tex]Area\approx 1973.94[/tex]
The area of regular hexagonal pyramid is 1973.94 sq. ft.
We know that
1 sq. yard = 9 sq. ft
The area of regular hexagonal pyramid in square yard is
[tex]\frac{1973.94}{9}\approx 219.3267[/tex]
It is given that cost of paint is 22 dollars per sq. yard. So, total cost is
[tex]\text{Total cost}=219.3267\times 22=4825.1874\approx 4825.19[/tex]
Therefore the total cost is $4825.19.