Respuesta :

[tex]d=\dfrac{k_A(T_2-T_1)}{T}\ \ \ \ |multiply\ both\ sides\ by\ T\\\\k_A(T_2-T_1)=dT\ \ \ \ |divide\ both\ sides\ by\ k_A\\\\T_2-T_1=\dfrac{dT}{k_A}\ \ \ \ |subtract\ T_2\ from\ both\ sides\\\\-T_1=\dfrac{dT}{k_A}-T_2\ \ \ \ \ |change\ signs\\\\\boxed{T_1=T_2-\frac{dT}{k_A}}[/tex]

The value of T1 is LT2 - (LD / kA).

Given,

D= kA [T2 - T1 / L].

We will find T1.

We have,

D= kA [T2 - T1 / L]

Removing the brackets.

D = kAT2 - kAT1 / L

Changing positions.

kAT1 / L = kAT2 - D

Multiplying L on both sides.

kAT1 = L x (kAT2 - D)

Dividing kA on both sides.

T1 = [ L x (kAT2 - D) ] / kA

T1 = [ LkAT2 - LD ] / kA

T1 = (LkAT2) / kA - LD / kA

T1 = LT2 - (LD / kA)

Thus T1 = LT2 - (LD / kA).

Learn more about solving an unknown value in equations here:

https://brainly.com/question/13059506

#SPJ2