Respuesta :
Answer:
P2≈393.609Kpa so I think the answer is 394 kPa
Explanation:
PV=mRT Ideal Gas Law
m and R are constant because they dont change for the problem. That means
PV/T=mR = constant
so P1*V1/T1=P2*V2/T2 and note that the temperatures are in absolute temperatures (Kelvin) because you can't divide by zero.
So P2 = P1*V1*T2/(V2*T1) = 101325 Pa * 700 mL * 303K/(200 mL*273K)
P2 = 393609 Pa
Answer:
3.94 x 10⁵ pascals
Explanation:
combined gas law problem
P₁V₁/T₁ = P₂V₂/T₂ => P₂ = P₁(V₂/V₁)(T₁2T₁)
P₁ = 1 atm at STP P₂ = unknown
V₁ = 700 ml V₂ = 200 ml
T₁ = 0°C = 273K T₂ = 30°C = 303K
P₂ = 1atm(700ml/200ml)(303K/273K) = 3.89 atm
3.89 atm = 3.89 atm(1.01 x 10⁵Pa/atm) = 3.94 x 10⁵ pascals