Answer:
Market A: [tex]P_{A} = 20.00[/tex]
Market B: [tex]P_{B} = 20.00[/tex]
Explanation:
Market A: [tex]P_{A} = 80 - 2Q_{A}[/tex] ........................ (1)
Market B: [tex]P_{B} = 60 - 1Q_{B}[/tex] ........................ (2)
MC = m = 20 ............................................... (3) for both markets
For Market A:
Profit maximizing price can be obtained when [tex]P_{A} = m[/tex]
Therefore, we have:
[tex]80 - 2Q_{A} = 20[/tex]
[tex]80 - 20 = 2Q_{A}[/tex]
[tex]60 = 2Q_{A}[/tex]
[tex]Q_{A} = \frac{60}{2}[/tex]
[tex]Q_{A} = 30[/tex]
Substituting 50 for [tex]Q_{A}[/tex] in equation (1), we have:
[tex]P_{A} = 80 - 2(30)[/tex]
[tex]P_{A} = 80 - 60[/tex]
[tex]P_{A} = 20.00[/tex]
For Market B:
Profit maximizing price can be obtained when [tex]P_{B} = m[/tex]
Therefore, we have:
[tex]60 - 1Q_{B} = 20[/tex]
[tex]60 - 20 = 1Q_{B}[/tex]
[tex]40 = 1Q_{B}[/tex]
[tex]Q_{B} = 40[/tex]
Substituting 80 for [tex]Q_{B}[/tex] in equation (2), we have:
[tex]P_{B} = 60 - 1(40)[/tex]
[tex]P_{B} = 20.00[/tex]