Respuesta :

Answer:

x = [tex]\frac{4}{3}[/tex], x = [tex]\frac{8}{3}[/tex]

Step-by-step explanation:

Given

- 2 | 3x - 6 | + 5 = 1 ( subtract 5 from both sides )

- 2 | 3x - 6 | = - 4 ( divide both sides by - 2 )

| 3x - 6 | = 2

The absolute value function always returns a positive solution, however, the expression inside can be positive or negative, that is

3x - 6 = 2 ( add 6 to both sides )

3x = 8 ( divide both sides by 3 )

x = [tex]\frac{8}{3}[/tex]

OR

- (3x - 6) = 2, that is

- 3x + 6 = 2 ( subtract 6 from both sides )

- 3x = - 4 ( divide both sides by - 3 )

x = [tex]\frac{4}{3}[/tex]

As a check

Substitute these values into the left side of the equation and if equal to the right side then they are the solutions.

x = [tex]\frac{8}{3}[/tex] : - 2| 8 - 6 | + 5 = - 2| 2| + 5 = -2(2) + 5 = - 4 + 5 = 1 = right side

x = [tex]\frac{4}{3}[/tex] : - 2 | 4 - 6| + 5 = - 2| - 2| + 5 = - 2(2) + 5 = - 4 + 5 = 1 = right side

Thus the solutions are x = [tex]\frac{4}{3}[/tex] and x = [tex]\frac{8}{3}[/tex]

Answer:

x = 1⅓, 2⅔

Step-by-step explanation:

-2 | 3x - 6 | + 5 = 1

-2 | 3x - 6 | = 1 - 5

-2 | 3x - 6 | = -4

| 3x - 6 | = 2

3x - 6 = 2

3x = 8

x = 8/3 = 2⅔

3x - 6 = -2

3x = 4

x = 4/3 = 1⅓