Determine the value of variables a, b, and c that make each equation true. What is the value of a in this equation? (xa)6 = StartFraction 1 Over x Superscript 30 EndFraction a = What is the value of b in this equation? (x-7)-4 = xb b = What is the value of c in this equation? (x-2)c = x22 c =

Respuesta :

Answer:

a)

[tex]a=\frac{1}{180x^2}[/tex]

b)

[tex]b=-4+\frac{28}{x}[/tex]

c)

[tex]c=\frac{22x}{x-2}[/tex]

Step-by-step explanation:

a)

[tex](xa)6=\frac{1}{30x}[/tex]

To find the value of a, we make a the subject of the equation, therefore cross multiplying to get:

[tex]1=180x^2a\\a=\frac{1}{180x^2}[/tex]

b)

[tex]-4(x-7) = xb[/tex]

Making b the subject of formula in the equation:

[tex]-4x+28=xb\\b=\frac{-4x+28}{x}\\ b=-4+\frac{28}{x}[/tex]

c)

[tex](x-2)c = 22x\\[/tex]

Making c the subject of the equation:

[tex](x-2)c = 22x\\c=\frac{22x}{x-2}[/tex]

The answers are:

A = -5

B = 28

C = -11