contestada

Both figures have 9 congruent small cubes with
side length of 1 unit. Please find attached file in
order to compare and contrast the two figures
in terms of surface area and volume.

Both figures have 9 congruent small cubes with side length of 1 unit Please find attached file in order to compare and contrast the two figures in terms of surf class=

Respuesta :

Answer:

Fig. 1 has less surface area than Fig. 2, but both figures have the same volume.

Step-by-step explanation:

The formulas for the surface area and volume are equal to:

[tex]A_{s} = n_{s} \cdot l^{2}[/tex]

[tex]V = n_{v}\cdot l^{3}[/tex]

Where:

[tex]n_{s}[/tex] - Number of faces.

[tex]n_{v}[/tex] - Number of cubes.

[tex]l[/tex] - Length of a cube side.

Surface Area

Fig. 1 has 34 faces, whereas Fig. 2 has 36 faces. The surface area are, respectively:

Fig. 1

[tex]A_{s} = 34\cdot (1\,u)^{2}[/tex]

[tex]A_{s} = 34\,u^{2}[/tex]

Fig. 2

[tex]A_{s} = 36\cdot (1\,u)^{2}[/tex]

[tex]A_{s} = 36\cdot u^{2}[/tex]

Fig. 2 has more surface area than Fig. 1

Volume

Fig. 1 has 9 cubes, whereas Fig. 2 has 9 cubes.

Fig. 1

[tex]V = 9\cdot (1\,u^{3})[/tex]

[tex]V = 9\,u^{3}[/tex]

Fig. 2

[tex]V = 9\cdot (1\,u^{3})[/tex]

[tex]V = 9\,u^{3}[/tex]

Both have the same volume.

Answer:

The two figures have equal volume, but different surface areas.

Step-by-step explanation:

Since the small cubes are congruent with side length of 1 unit, the area of its surfaces is 1 squared unit.

For fig 1, the surface area = number of faces × 1 squared unit

                                          = 34 ×1 squared unit

                                          = 34 squared unit

For fig 2, the surface area = number of faces × 1 squared unit

                                           = 38 ×  1 squared unit

                                           = 38 squared unit

The volume of a cube = 1 cube unit

For fig 1, volume  = number of cubes ×1 cube unit

                                  = 9 × 1 cube unit

                                 = 9 cube unit

For fig 2, volume = number of cubes ×1 cube unit

                            = 9 × 1 cube unit

                           = 9 cube unit