Answer:
Fig. 1 has less surface area than Fig. 2, but both figures have the same volume.
Step-by-step explanation:
The formulas for the surface area and volume are equal to:
[tex]A_{s} = n_{s} \cdot l^{2}[/tex]
[tex]V = n_{v}\cdot l^{3}[/tex]
Where:
[tex]n_{s}[/tex] - Number of faces.
[tex]n_{v}[/tex] - Number of cubes.
[tex]l[/tex] - Length of a cube side.
Surface Area
Fig. 1 has 34 faces, whereas Fig. 2 has 36 faces. The surface area are, respectively:
Fig. 1
[tex]A_{s} = 34\cdot (1\,u)^{2}[/tex]
[tex]A_{s} = 34\,u^{2}[/tex]
Fig. 2
[tex]A_{s} = 36\cdot (1\,u)^{2}[/tex]
[tex]A_{s} = 36\cdot u^{2}[/tex]
Fig. 2 has more surface area than Fig. 1
Volume
Fig. 1 has 9 cubes, whereas Fig. 2 has 9 cubes.
Fig. 1
[tex]V = 9\cdot (1\,u^{3})[/tex]
[tex]V = 9\,u^{3}[/tex]
Fig. 2
[tex]V = 9\cdot (1\,u^{3})[/tex]
[tex]V = 9\,u^{3}[/tex]
Both have the same volume.