Answer: Equilibrium temperature they reach is 383 K
Explanation:
[tex]heat_{absorbed}=heat_{released}[/tex]
As we know that,
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex] .................(1)
where,
q = heat absorbed or released
[tex]m_1[/tex] = mass of gold = 1.3 kg
[tex]m_2[/tex] = mass of copper = 2.1 kg
[tex]T_{final}[/tex] = final temperature = ?
[tex]T_1[/tex] = temperature of gold= 300 K
[tex]T_2[/tex] = temperature of copper = 400 K
[tex]c_1[/tex] = specific heat of gold = [tex]126J/kgK[/tex]
[tex]c_2[/tex] = specific heat of copper = [tex]386J/kgK[/tex]
Now put all the given values in equation (1), we get
[tex]1.3\times 126\times (T_{final}-300)=-[2.1\times 386\times (T_{final}-400)][/tex]
[tex]T_{final}=383K[/tex]
Thus equilibrium temperature they reach is 383 K