Use the quadratic f(x)=x²+3x-4 and use any method to solve for the Zeros. Use the same function to solve for x when y is 6. F(x)=6 Last, solve f(x)=10 for x.

Respuesta :

Answer:

a) [tex]f(x) = (x+4)\cdot (x-3)[/tex], b) [tex]x = -5[/tex] or [tex]x = 2[/tex], c) [tex]x \approx 2.531[/tex] or [tex]x \approx -5.531[/tex]

Step-by-step explanation:

a) The function is solved by factorization:

[tex]f(x) = (x+4)\cdot (x-3)[/tex]

b) The function has the following form:

[tex]x^{2} + 3\cdot x - 4 = 6[/tex]

[tex]x^{2} + 3\cdot x - 10 = 0[/tex]

The roots of the polynomial are found by factorization:

[tex](x+5)\cdot (x-2) = 0[/tex]

[tex]x = -5[/tex] or [tex]x = 2[/tex]

c) The function has the following form:

[tex]x^{2} + 3\cdot x - 4 = 10[/tex]

[tex]x^{2} + 3\cdot x - 14 = 0[/tex]

The roots of the polynomial are determined by the General Formula for the Second-Order Polynomial:

[tex]x_{1} = \frac{-3+\sqrt{3^{2}-4\cdot (1)\cdot (-14)}}{2\cdot (1)}[/tex]

[tex]x_{1} \approx 2.531[/tex]

[tex]x_{2} = \frac{-3-\sqrt{3^{2}-4\cdot (1)\cdot (-14)}}{2\cdot (1)}[/tex]

[tex]x_{2} \approx -5.531[/tex]