Respuesta :
Answer:
[tex]v_{o} = 22.703\,\frac{m}{s}[/tex] [tex]\left(50.795\,\frac{m}{s}\right)[/tex]
Explanation:
The deceleration of the car on the dry pavement is found by the Newton's Law:
[tex]\Sigma F = -\mu_{k,1}\cdot m\cdot g \cdot \cos \theta + m\cdot g \cdot \sin \theta = m\cdot a_{1}[/tex]
Where:
[tex]a_{1} = (-\mu_{k,1}\cdot \cos \theta + \sin \theta)\cdot g[/tex]
[tex]a_{1} = (-0.33\cdot \cos 1.146^{\textdegree}+\sin 1.146^{\textdegree})\cdot \left(9.807\,\frac{m}{s^{2}} \right)[/tex]
[tex]a_{1} = -3.040\,\frac{m}{s^{2}}[/tex]
Likewise, the deceleration of the car on the unpaved shoulder is:
[tex]a_{2} = (-\mu_{k,2}\cdot \cos \theta + \sin \theta)\cdot g[/tex]
[tex]a_{2} = (-0.28\cdot \cos 1.146^{\textdegree}+\sin 1.146^{\textdegree})\cdot \left(9.807\,\frac{m}{s^{2}} \right)[/tex]
[tex]a_{2} = -2.549\,\frac{m}{s^{2}}[/tex]
The speed just before the car entered the unpaved shoulder is:
[tex]v_{o} = \sqrt{\left(4.469\,\frac{m}{s} \right)^{2}-2\cdot \left(-2.549\,\frac{m}{s^{2}} \right)\cdot (60.88\,m)}[/tex]
[tex]v_{o} = 18.175\,\frac{m}{s}[/tex]
And, the speed just before the pavement skid was begun is:
[tex]v_{o} = \sqrt{\left(18.175\,\frac{m}{s} \right)^{2}-2\cdot \left(-3.040\,\frac{m}{s^{2}} \right)\cdot (30.44\,m)}[/tex]
[tex]v_{o} = 22.703\,\frac{m}{s}[/tex] [tex]\left(50.795\,\frac{m}{s}\right)[/tex]