Element X decays radioactively with a half life of 11 minutes. If there are 870 grams of Element X, how long, to the nearest tenth of a minute, would it take the element to decay to 154 grams?

Respuesta :

Answer:

It would take 27.5 minutes the element to decay to 154 grams.

Step-by-step explanation:

The decay equation:

[tex]\frac {dN}{dt}\propto -N[/tex]

[tex]\Rightarrow \R\frac {dN}{dt}=-\lambda N[/tex]

[tex]\Rightarrow \frac {dN}N=-\lambda dt[/tex]

Integrating both sides

[tex]\Rightarrow \int \frac {dN}N=\int-\lambda dt[/tex]

[tex]\Rightarrow ln|N|=-\lambda t+c[/tex]

When t=0, N=[tex]N_0[/tex] = initial amount

[tex]ln|N_0|=-\lambda .0+c[/tex]

[tex]\Rightarrow c=ln|N_0|[/tex]

[tex]ln|N|=-\lambda t+ln|N_0|[/tex]

[tex]\Rightarrow ln|N|-ln|N_0|=-\lambda t[/tex]

[tex]\Rightarrow ln|\frac{N}{N_0}|=-\lambda t[/tex]

Decay equation:              

                    [tex]ln|\frac{N}{N_0}|=-\lambda t[/tex]

Given that, the half life of of element X is 11 minutes.

For half life, [tex]N=\frac12 N_0[/tex],  t= 11 min.

[tex]ln|\frac{N}{N_0}|=-\lambda t[/tex]

[tex]\Rightarrow ln|\frac{\frac12N_0}{N_0}|=-\lambda . 11[/tex]

[tex]\Rightarrow ln|\frac12}|=-\lambda . 11[/tex]

[tex]\Rightarrow -\lambda . 11=ln|\frac12}|[/tex]

[tex]\Rightarrow \lambda =\frac{ln|\frac12|}{-11}[/tex]

[tex]\Rightarrow \lambda =\frac{ln|2|}{11}[/tex]                [ [tex]ln|\frac12|=ln|1|-ln|2|=-ln|2|[/tex] , since ln|1|=0]

N=154 grams, [tex]N_0[/tex] = 870 grams, t=?

[tex]ln|\frac{N}{N_0}|=-\lambda t[/tex]

[tex]\Rightarrow ln|\frac{154}{870}|=-\frac{ln|2|}{11}.t[/tex]

[tex]\Rightarrow t= \frac{ln|\frac{154}{870}|\times 11}{-ln|2|}[/tex]

      =27.5 minutes

It would take 27.5 minutes the element to decay to 154 grams.

Answer:

60.6 minutes

Step-by-step explanation:

--------------------------------