A muonic atom consists of a muon (m = 106 MeV/c2) in place of an electron. For the muon in a hydrogen atom, what are the following? (a) the smallest radius in the ground state .53e-10m(b) the binding energy of the muon in the ground state eV (c) the series limit of the wavelength for the first three series nm (first series) nm (second series) nm (third series)

Respuesta :

Answer:

a. see attachment

b. 2535ev

c. 4.40nm

Explanation:

Please kindly check attachment for the detailed and step by step solution of the given problem.

Ver imagen kendrich

Following are solution to the given equation:

The muon's reduced mass is determined as follows:

[tex]\to \mu =\frac{mM}{m+M}=\frac{(106 Me \frac{V}{c^2})(938 Me \frac{V}{c^2})}{(106 Me \frac{V}{c^2})+(938 Me \frac{V}{c^2})}\\\\ \to \mu= 95.2 Me \frac{V}{c^2} \\\\[/tex]

The electron's charge is [tex]e=1.6 \times 10^{-19}\ C[/tex] Where the free space's permittivity is [tex]\varepsilon_0 = 8.85 \times 10^{-12} \ \frac{C^2}{N.m^2}[/tex]. So,  

[tex]\to \frac{e^2}{4 \pi \varepsilon_0 } =1.44 \times 10^{-9} eV.m \\\\[/tex]

Inside the ground state, the lowest radius is calculated as follows:

[tex]\to a_0=\frac{4 \pi \varepsilon_0 h^2 }{\mu e^2}=\frac{h^2}{(\frac{e^2}{4\pi \varepsilon_0 }) \mu}\\\\[/tex]

                      [tex]= \frac{(6.58\times 10^{-16} eV.s)^2}{(1.44 \times 10^{-9}\ eV.m)(95.2 \times 10^6 \frac{eV}{c^2})} \\\\=3.15 \times 10^{-30} \ c^2 (\frac{3.00 \times 10^8}{c})^2 \\\\= 2.84 \times 10^{-13} \ m\\\\[/tex]

For point b:

The muon's binding energy in the ground state is

[tex]\to E=\frac{e^2}{8 \pi \varepsilon_0 a_0 }[/tex]

        [tex]=\frac{1}{2a_0}(\frac{e^2}{4 \pi \varepsilon_0 })\\\\=\frac{(1.44 \times 10^{-9}\ eV.m)}{2(2.84 \times 10^{-13}\ m)} \\\\=\frac{1.44 \times 10^{-9}\times 10^{13} \ eV}{5. 68 } \\\\ = 2535\ eV\\\\[/tex]

For point c:

The wavelength for the first series (n=1) is,

[tex]\to \lambda =n^2 (\frac{hc}{E})[/tex]

       [tex]= \frac{ (1)^2 (1240 eV .nm)}{2535\ eV} \\\\= \frac{ 1 \times 1240 eV .nm}{2535\ eV} \\\\= \frac{ 1240\ nm}{2535} \approx 0.49\ nm\\\\[/tex]

The wavelength for the second series (n=2) is,

[tex]\to \lambda= \frac{(n)^2 hc}{E}[/tex]

       [tex]= \frac{(2)^2 (1240 eV .nm)}{2535\ eV}\\\\ = \frac{ 4 \times 1240 eV .nm}{2535\ eV}\\\\ = \frac{ 4960 nm}{2535\ eV}\ \approx 1.96 \ nm \\\\[/tex]

The wavelength for the third series (n=3) is,

[tex]\to \lambda =\frac{(n)^2 hc}{E}[/tex]

      [tex]=\frac{(3)^2 (1240 eV.nm)}{2535 \ eV} \\\\ =\frac{ 9 \times 1240 \ nm}{2535 } \\\\= \frac{ 11160 \ nm}{2535 }\\\\ = 4.40\ nm \\\\[/tex]

Learn more:

brainly.com/question/7175847