In ΔOPQ, the measure of ∠Q=90°, QO = 5.9 feet, and OP = 8 feet. Find the measure of ∠P to the nearest tenth of a degree.

Respuesta :

Answer:

Measure of [tex]\angle P[/tex] to nearest tenth of a degree is [tex]47.5^{\circ}[/tex].

Step-by-step explanation:

Diagram of given scenario is shown below.

Given that,

A right angle triangle [tex]\triangle OPQ[/tex]. Base of triangle is [tex]QP[/tex].

Perpendicular side of triangle is [tex]OQ[/tex] and Hypotenuse side of triangle is [tex]OP[/tex].

In  [tex]\triangle OPQ[/tex], [tex]\angle Q=90^{\circ}[/tex],[tex]QO=5.9[/tex] and [tex]OP=8[/tex].

Now, Using Trigonometry ratio:

        [tex]Sin\theta=\frac{Perpendicular}{Hypoteneuse}[/tex]

So, Substituting the values of perpendicular and hypotenuse we get:

    [tex]Sin\angle P = \frac{OQ}{OP} =\frac{5.9}{8}[/tex]

    [tex]Sin\angle P = 0.7375[/tex]  ⇒   [tex]\angle P= Sin^{-1}(0.7375)=47.51888^{\circ}[/tex]

Therefore, Measure of [tex]\angle P[/tex] to nearest tenth of a degree is [tex]47.5^{\circ}[/tex].

                                       

Ver imagen sihanmintu

Answer:

47.5°

Step-by-step explanation:

\sin P =

hypotenuse

opposite

= 5.9/8

sin P=  5.9/8

P=sin  -1

(5.9/8)

P=47.5189 ≈ 47.5°

​