Answer:
Explanation:
The time (T) = 6 months = 6/12 years = 0.5 years
Interest rate (r) = 6% = 0.06
The stock is priced [S(0)] = $36.50
The price the stock sells at 6 months ([tex]V_c[/tex]) = $3.20
European call (K) = $35
The price (P) is given by:
[tex]P=V_c+K.e^{-rT}-S(0)+Dividends\\But, Dividends = 0.5*e^{-0.25*0.06}+ 0.5*e^{-0.5*0.06}\\Therefore, P=V_c+K.e^{-rT}-S(0)+0.5*e^{-0.25*0.06}+ 0.5*e^{-0.5*0.06}\\Substituting:\\P=3.2+35*e^{-0.06*0.5}-36.5+0.5*e^{-0.25*0.06}+ 0.5*e^{-0.5*0.06}\\P=3.2+33.9656-36.5+0.4926+0.4852\\P=1.64[/tex]
The price of a 6-month, $35.00 strike put option is $1.65