Answer:
[tex]y = \frac{(x+6)\cdot (x+1)}{(x-4)\cdot (x+2)} + 5[/tex]
Step-by-step explanation:
The vertical asymptotes correspond to points where denominator is equalized to zero. Whereas, x-intercepts corresponds to points where numerator is equalized to zero. Lastly, the horizontal asymptote corresponds to the limit of the function when x diverges to plus or minus infinity. Then, the rational equation is:
[tex]y = \frac{(x+6)\cdot (x+1)}{(x-4)\cdot (x+2)} + 5[/tex]