Answer:
A) 0.195618171
B) It will clear the balance after 32 months.
Explanation:
We calculate the effective rate considering compounding interest:
[tex]1.015^{12} - 1 = 0.195618171[/tex]
2) we sovle for N using the present value of an annuity
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C $150.00
time n
rate 0.015
PV $3,750.0000
[tex]150 \times \frac{1-(1+0.015)^{-n} }{0.015} = 3750\\[/tex]
[tex](1+0.015)^{-n}= 1-\frac{3750\times0.015}{150}[/tex]
[tex](1+0.015)^{-n} = 0.625[/tex]
[tex]-n= \frac{log0.625}{log(1+0.015)}[/tex]
n = 31.56799396