The graph solution to the given expression is "2".
[tex]\to f(x)=2(3\sqrt{x})-4\\\\\to g(x)=2x^2-4[/tex]
[tex]\to f(x)=g(x)\\\\\to 2(3\sqrt{x})-4 =2x^2-4\\\\\to 2(3\sqrt{x}) =2x^2-4+4\\\\\to 2(3\sqrt{x}) =2x^2\\\\\to (3\sqrt{x}) =x^2\\\\ \to \sqrt{x}=(\frac{x^2}{3})\\\\[/tex]
By squaring both sides of the above equation, we get
[tex]\to (\sqrt{x})^2=(\frac{x^2}{3})^2\\\\\to (x)=(\frac{x^4}{9})\\\\\to x-\frac{x^4}{9}=0\\\\\to \frac{9x-x^4}{9}=0\\\\\to 9x-x^4=0\\\\\to 9x=x^4\\\\\to 9= x^3\\\\\to x^3=9\\\\\to x= 9^{\frac{1}{3}}\\\\\to x=2.080084\\[/tex]
Therefore, the value of x is "2" which is "option D".
Find out the more information about the graph equation here:
brainly.com/question/1971145