Use the graph that shows the solution to
f(x)=g(x)
f(x)=2(3√x)-4
g(x)=2x^2-4

What is the solution to
f(x)=g(x)
?
Select each correct answer.
A. x= -1
B. x=0
C. x=1
D. x=2

Respuesta :

The graph solution to the given expression is "2".

Graph equation

[tex]\to f(x)=2(3\sqrt{x})-4\\\\\to g(x)=2x^2-4[/tex]

[tex]\to f(x)=g(x)\\\\\to 2(3\sqrt{x})-4 =2x^2-4\\\\\to 2(3\sqrt{x}) =2x^2-4+4\\\\\to 2(3\sqrt{x}) =2x^2\\\\\to (3\sqrt{x}) =x^2\\\\ \to \sqrt{x}=(\frac{x^2}{3})\\\\[/tex]

By squaring both sides of the above equation, we get

[tex]\to (\sqrt{x})^2=(\frac{x^2}{3})^2\\\\\to (x)=(\frac{x^4}{9})\\\\\to x-\frac{x^4}{9}=0\\\\\to \frac{9x-x^4}{9}=0\\\\\to 9x-x^4=0\\\\\to 9x=x^4\\\\\to 9= x^3\\\\\to x^3=9\\\\\to x= 9^{\frac{1}{3}}\\\\\to x=2.080084\\[/tex]

Therefore, the value of x is "2" which is "option D".

Find out the more information about the graph equation here:

brainly.com/question/1971145

Ver imagen codiepienagoya