The change in entropy of the star Rigel is 22595.44×10²³J/Ks
The change in entropy of the system is given by:
[tex]\Delta S=\frac{\Delta Q}{T}[/tex]
In the case of Rigel star, the total change in entropy is given by:
[tex]\Delta S_R=\Delta S_{core}+\Delta S_{surface}[/tex]
The temperature of the core is [tex]T_{core}=5.0 \times10^7 K[/tex]
The temperature of the surface is [tex]T_{surface}=10100 K[/tex]
Heat exchanged per second between the core and the surface is [tex]\Delta Q=2.28\times10^{31}J[/tex]
[tex]\Delta S_{core}=\frac{\Delta Q}{T_{core}}\\\\ \Delta S_{core}=\frac{-2.28\times10^{31}}{5.0\times10^7} \\\\\Delta S_{core}=-4.56\times10^{23}J/Ks[/tex]
Also,
[tex]\Delta S_{surface}=\frac{\Delta Q}{T_{surface}}\\\\ \Delta S_{surface}=\frac{2.28\times10^{31}}{10100} \\\\\Delta S_{surface}=2.26\times10^{27}J/Ks=22600\times10^{23}J/Ks[/tex]
Total change in entropy:
[tex]\Delta S_R=\Delta S_{core}+\Delta S_{surface}\\\\\Delta S_R=-4.56\times10^{23}+22600\times10^{23}\\\\\Delta S_R=22595.44\times10^{23}J/Ks[/tex]
Learn more about change in entropy:
https://brainly.com/question/490678?referrer=searchResults