Answer:
1010713.18851 Pa
387999.259089 N
[tex]2.48335668\times 10^9\ Pa[/tex]
Explanation:
[tex]P_0[/tex] = Atmospheric pressure = [tex]8.043\times 10^4\ Pa[/tex]
r = Radius = 2 m
h = Depth = 10 m
[tex]\rho[/tex] = Density of liquid methane = [tex]415\ kg/m^3[/tex]
g = Acceleration due to gravity = 7.44 m/s²
A = Area
Force is given by
[tex]F=P_0A\\\Rightarrow F=8.043\times 10^4\times \pi\times 2^2\\\Rightarrow F=1010713.18851\ N[/tex]
The force exerted is 1010713.18851 Pa
[tex]F=mg\\\Rightarrow F=\rho Vg\\\Rightarrow F=415\times \pi 2^2\times 10\times 7.44\\\Rightarrow F=387999.259089\ N[/tex]
The weight of the column of methane is 387999.259089 N
The pressure at a depth is given by
[tex]P=P_0+\rho gh\\\Rightarrow P=8.043\times 10^4\times +415\times 7.44\times 10\\\Rightarrow P=2.48335668\times 10^9\ Pa[/tex]
The pressure at the depth is [tex]2.48335668\times 10^9\ Pa[/tex]