Suppose a distant world with surface gravity of 7.44 m/s2 has an atmospheric pressure of 8.04 3 104 Pa at the surface.

(a) What force is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of a methane ocean?
(b) What is the weight of a 10.0-m deep cylindrical column of methane with radius 2.00 m?
(c) Calculate the pressure at a depth of 10.0 m in the methane ocean. Note: The density of liquid methane is 415 kg/m3.

Respuesta :

Answer:

1010713.18851 Pa

387999.259089 N

[tex]2.48335668\times 10^9\ Pa[/tex]

Explanation:

[tex]P_0[/tex] = Atmospheric pressure = [tex]8.043\times 10^4\ Pa[/tex]

r = Radius = 2 m

h = Depth = 10 m

[tex]\rho[/tex] = Density of liquid methane = [tex]415\ kg/m^3[/tex]

g = Acceleration due to gravity = 7.44 m/s²

A = Area

Force is given by

[tex]F=P_0A\\\Rightarrow F=8.043\times 10^4\times \pi\times 2^2\\\Rightarrow F=1010713.18851\ N[/tex]

The force exerted is 1010713.18851 Pa

[tex]F=mg\\\Rightarrow F=\rho Vg\\\Rightarrow F=415\times \pi 2^2\times 10\times 7.44\\\Rightarrow F=387999.259089\ N[/tex]

The weight of the column of methane is 387999.259089 N

The pressure at a depth is given by

[tex]P=P_0+\rho gh\\\Rightarrow P=8.043\times 10^4\times +415\times 7.44\times 10\\\Rightarrow P=2.48335668\times 10^9\ Pa[/tex]

The pressure at the depth is [tex]2.48335668\times 10^9\ Pa[/tex]