Answer:
[tex]CL_{max} = 2.182[/tex]
Explanation:
Given that;
weight of the airplane = 49,000 lbs
wing area [tex]S_w[/tex] = 529 ft²
Thrust = 17000 lbs
Length of the catapult = 400 ft
Initial speed [tex]v_1[/tex] = 0
Final speed [tex]v_2 = 140 \ knots[/tex]
density [tex]\rho[/tex] = 0.002376 slugs/ft³
To find the [tex]V_{stall}[/tex]; we have:
[tex]V_{stall}[/tex] = [tex]\frac{140}{1.25}[/tex]
[tex]V_{stall}[/tex] = 112 knots
[tex]V_{stall}[/tex] = 112 × 1.6878 ft/s
[tex]V_{stall}[/tex] = 189.0336 ft/s
Weight W = [tex]\frac{1}{2} \rho *V^2_{stall} *S_w*CL_{max}[/tex]
[tex]CL_{max} = \frac{2 W}{\rho * V^2_{stall}*S_w}[/tex]
[tex]CL_{max} = \frac{2 * 49000}{0.002376 * 189.0336^2*529}[/tex]
[tex]CL_{max} = 2.182[/tex]