Respuesta :
Hello,
y=2xe^x
y'=2(e^x+xe^x)=2(x+1)e^x
y''=2(e^x+(x+1)e^x)=2(x+2)e^x
x |-infinite -2 0 +infinite
e^x | ++++++++++++++++++
x+2 |------------0 +++++++++++
y'' | -----------0 +++++++++++
y''<0 if x<-2
The interval on which the graph is concave down is (-infinite -2[
y=2xe^x
y'=2(e^x+xe^x)=2(x+1)e^x
y''=2(e^x+(x+1)e^x)=2(x+2)e^x
x |-infinite -2 0 +infinite
e^x | ++++++++++++++++++
x+2 |------------0 +++++++++++
y'' | -----------0 +++++++++++
y''<0 if x<-2
The interval on which the graph is concave down is (-infinite -2[
Using the second derivative, it is found that the graph is concave down on the interval [tex](-\infty, -2)[/tex].
A function is concave down when the second derivative is negative.
The function is:
[tex]f(x) = 2xe^x[/tex]
The first derivative is as follows, applying the product rule:
[tex]f^{\prime}(x) = 2e^x + 2xe^x[/tex]
The second derivative is the derivative of the first derivative, given by:
[tex]f^{\prime\prime}(x) = 2e^x + 2e^x + 2xe^{x} = 4e^x + 2xe^x = e^x(4 + 2x)[/tex]
The exponential is always positive, so the second derivative is negative if:
[tex]4 + 2x < 0[/tex]
[tex]2x < -4[/tex]
[tex]x < -\frac{4}{2}[/tex]
[tex]x < -2[/tex]
Hence, the graph is concave down on the interval [tex](-\infty, -2)[/tex].
A similar problem is given at https://brainly.com/question/13539822