Find the perimeter of the following shape, rounded to the nearest tenth: Shape ABCD is shown. Point A is at negative 3, 5. Point B is at 1, 7. Point C is at 3, 3. Point D is at negative 1, 1.
9.8
16
17.9
24

Respuesta :

You the points A(-3, 5), B(1, 7), C(3, 3) and D(-1, 1).
You use the formula: AB= [tex] \sqrt{ ( x_{B}- x_{A} )^{2} +( y_{B}- y_{A} )^{2}} [/tex]

AB = [tex] \sqrt{ (-3-1)^{2} + (7-5)^{2} } = \sqrt{ 4^{2} + 2^{2} } = \sqrt{20} [/tex]

DC = [tex] \sqrt{ (3+1)^{2}+ (3-1)^{2} } = \sqrt{20} [/tex]

BC = [tex] \sqrt{ (1-3)^{2}+ (7-3)^{2} } = \sqrt{20} [/tex]

AD = [tex] \sqrt{ (-3+1)^{2}+(5-1)^{2} }= \sqrt{20} [/tex]

AB=DC and AD=BC => the shape is a parallelogram(1)
But AB=DC=AD=BC + (1) => the shape is a square
Perimeter for a square = 4*l =4* [tex] \sqrt{20} [/tex]

[tex] \sqrt{20} [/tex] = 4.472135

P=4*
4.472135=17.8854 which is rounded to 17.9

The right answer is C. 17.9

Answer:

17.9

Step-by-step explanation: