Respuesta :
A=P(1+[tex] \frac{r}{100} )^{n} [/tex]
A=500(1+[tex] \frac{1.1}{100} )^{10} [/tex]
A=500(1.011[tex] )^{10} [/tex]
A=500(1.1156)
A=557.80
A=500(1+[tex] \frac{1.1}{100} )^{10} [/tex]
A=500(1.011[tex] )^{10} [/tex]
A=500(1.1156)
A=557.80
For continuous compounding, the formula is:
[tex]A=Pe^{rt}[/tex]
where e is the base of natural logs.
[tex]A=500\timese^{0.011\times10}=558.14[/tex]
So the amount after 10 years is $558.14
[tex]A=Pe^{rt}[/tex]
where e is the base of natural logs.
[tex]A=500\timese^{0.011\times10}=558.14[/tex]
So the amount after 10 years is $558.14