Respuesta :

Answer: Projection of (2,6) onto (-1,5) is given by

[tex]\dfrac{28}{\sqrt{26}}[/tex]

Step-by-step explanation:

Let [tex]\vec{a}=2\hat{i}+6\hat{j}[/tex]

and [tex]\vec{b}=-1\jhat{i}+5\hat{j}[/tex]

we need to find the projection of [tex]\vec{a}[/tex] onto [tex]\vec{b}[/tex]

As we know the formula for projection:

[tex]Projection=\frac{\vec{b}}{\mid b\mid}. \vec{a}[/tex]

Since we know the value of  [tex]\vec{b}=-1\jhat{i}+5\hat{j}[/tex]

so,

[tex]\mid b\mid=\sqrt{(-1)^2+(5)^2}\\\\\mid b\mid=\sqrt{1+25}\\\\\mid b \mid=\sqrt{26}[/tex]

so, [tex]\dfrac{\vec{b}}{\mid b\mid}=\dfrac{-1\hat{i}+5\hat{j}}{\sqrt{26}}[/tex]

Now, it becomes,

[tex]Projection=\dfrac{(2\ht{i}+6\hat{j}).(-1\hat{i}+5\hat{j})}{\sqrt{26}}\\\\Projection=\dfrac{-2+30}{\sqrt{26}}\\\\Projection=\dfrac{28}{\sqrt{26}}[/tex]

Hence, projection of (2,6) onto (-1,5) is given by

[tex]\dfrac{28}{\sqrt{26}}[/tex]

Dy1ann

Answer:

1.08(-1,5)

Step-by-step explanation:

Just took the test