Respuesta :

s=[tex] \frac{1}{3} [/tex]
A=18[tex] s^{2} [/tex]
A=18*([tex] \frac{1}{3 )^{2} } [/tex]
A=2

Answer:  The required value of A is 2 square units.

Step-by-step explanation:  We are given the following values for s and A :

[tex]s=\dfrac{1}{3}~\textup{unit}~~~~\textup{and}~~~A=18s^2.[/tex]

We are to find the value of A in square units.

To find the value of A, we need to substitute the value of s in the expression for A.

Therefore, we get

[tex]A=18s^2=18\times\left(\dfrac{1}{3}\right)^2=18\times\dfrac{1}{9}=2~\textup{sq. units}.[/tex]

Thus, the required value of A is 2 square units.